Operationalizing Edge Machine Learning with Apache Spark

ParallelM
Growing AI Investments; Few Deployed at Scale

Out of 160 reviewed AI use cases:

88% did not progress beyond the experimental stage

But successful early AI adopters report:

Profit margins 3-15% higher than industry average

Source: “Artificial Intelligence: The Next Digital Frontier?”, McKinsey Global Institute, June 2017

Survey of 3073 AI-aware C-level Executives
Challenges of Deploying & Managing ML in Production

- Diverse focus and expertise of Data Science & Ops teams
- Increased risk from non-deterministic nature of ML
- Current Operations solutions do not address uniqueness of ML Apps
Challenges of Edge/Distributed Topologies

- Varied resources at each level
- Scale, heterogeneity, disconnected operation
What We Need For Operational ML

- Accelerate deployment & facilitate collaboration between Data & Ops teams
- Monitor validity of ML predictions, diagnose data and ML performance issues
- Orchestrate training, update, and configuration of ML pipelines across distributed, heterogeneous infrastructure with tracking
What We Need For Edge Operational ML

- Distribute analytics processing to the optimal point for each use case
- Flexible management framework enables:
 - Secure centralized and/or local learning, prediction, or combined learning/prediction
 - Granular monitoring and control of model update policies
- Support multi-layer topologies to achieve maximum scale while accommodating low bandwidth or unreliable connectivity
MLOps - Managing the full Production ML Lifecycle

Machine Learning Models

Collaboration

ML Orchestration

Continuous Integration/Deployment

Model Governance

Database

ML Health

Business Impact

Business Value

Collaboration

ParallelM
Our Approach

Data Science Platforms

MCenter

MCenter Server

MCenter Developer Connectors

Analytic Engines

Data Streams

Data Lakes

Models, Retraining
Control, Statistics
Events, Alerts
Data

DataRobot
H2O
dataiku
jupyter
and more...

MCenter Agent

Spark

Flink

TensorFlow

PyTorch

ParallelAI
Operational Abstraction

• Link pipelines (training and inference) via an ION (Intelligence Overlay Network)

• Basically a Directed Graph representation with allowance for cycles

• Pipelines are DAGs within each engine

• Distributed execution over heterogeneous engines, programming languages and geographies

Example - KMeans Batch Training Plus Streaming Inference Anomaly Detection
An Example ION to Resource Mapping

Every Tuesday at 10AM - Cloud

Every 5 min - Edge

Central/Cloud Intelligence

Models

Edge Intelligence

Streams

Sources

Data Lake

Batches
Pipeline Examples

Training Pipeline (SparkML)

Inference Pipeline (SparkML)
Instrument, Upload, Orchestrate, Monitor

```
import pyspark
from mlops import MLAnalytics as mla

# Train & Evaluate
modelRandForest = Pipeline(stages=fullPipe).fit(input_train)
predictions = modelRF.transform(input_test)
rmse_eval = RegressionEvaluator(...).evaluate(predictions)
mla.stat("RMSE", rmse_eval, st.TIME_SERIES
mlt = MultiLineGraph().name("G1").labels([]).data([[]])
mla.stat(mlt)

# Table
for j in range(0, len(maxDepthRange)):
    col_name.append(str(maxDepthRange[j]))
tbl = Table().name("HyperParams Depth").cols(col_name)
tbl.add_row("RMSE", [%2f % x for x in rmse_array])
tbl.add_row("R2", [...] pm.stat(tbl)
mla.stat(tbl)
```

(a) ION Template

(b) Code w/ API Instrumentation

(c) Pipeline at Runtime
Integrating with Analytics Engines (Spark)

Job Management
- Via *SparkLauncher*: A library to control launching, monitoring and terminating jobs
 - PM Agent communicates with Spark through this library for job management (also uses Java API to launch child processes)

Statistics
- Via *SparkListener*: A Spark-driver callback service
 - *SparkListener* taps into all accumulators which, is one of the popular ways to expose statistics
 - PM agent communicates with the Spark driver and exposes statistics via a REST endpoint

ML Health / Model collection and updates
- PM Agent delivers and receives health events, health objects and models via sockets from custom PM components in the ML Pipeline
Demo Description
Thank You!

Nisha Talagala
nisha.talagala@parallelm.com

Vinay Sridhar
vinay.sridhar@parallelm.com
What We Need For Edge Operational ML

- Distribute analytics processing to the optimal point for each use case.
- Flexible management framework enables:
 - Secure centralized and/or local learning, prediction, or combined learning/prediction.
 - Granular monitoring and control of model update policies.
 - Support multi-layer topologies to achieve maximum scale while accommodating low bandwidth or unreliable connectivity.
Integrating with Analytics Engines (TensorFlow)

Job Management
- TensorFlow Python programs run as standalone applications
- Standard process control mechanisms based on the OS is used to monitor and control TensorFlow programs

Statistics Collection
- PM Agent parses contents via *TensorBoard* log files to extract meaningful statistics and events that data scientists added

ML Health / Model collection
- Generation of models and health objects is recorded on a shared medium
An Example ION

- **Node 1: Inference Pipeline**
 - Every 5 min on Spark cluster 1

- **Node 2: (Re) Training Pipeline**
 - Every Tuesday at 10AM on Spark cluster 2

- **Node 3: Policy**
 - Human approves/rejects
 - When: anytime there is a new model